トップページinformatics
44コメント14KB

パーセプトロン

■ このスレッドは過去ログ倉庫に格納されています
0001名無しさん@お腹いっぱい。2012/03/05(月) 10:34:11.64ID:w+qXHVn90
パーセプトロンについて
0015名無しさん@お腹いっぱい。2012/03/28(水) 20:07:15.74ID:dObpLfXx0
こんな単純な部品の組み合わせで、例えば写真を見て
『この人は日本人かインド象か?』などのパターン認識をしてしまう。
0016名無しさん@お腹いっぱい。2012/03/28(水) 20:09:09.06ID:dObpLfXx0
こんな単純な部品の組み合わせで、例えば写真を見て
『この人は日本人かインド象か?』などのパターン認識をしてしまう。
0017名無しさん@お腹いっぱい。2012/03/28(水) 20:13:45.47ID:dObpLfXx0
パーセプトロンには
『単純パーセプトロン』と
http://hooktail.org/computer/index.php?plugin=ref&page=Perceptron&src=perceptron5.png

『多層パーセプトロン』がある。
http://hooktail.org/computer/index.php?plugin=ref&page=Perceptron&src=perceptron4.png

どう違うかは図を見れば分かると思うが、
『単純パーセプトロン』は2層だし、
『多層パーセプトロン』は3層だ。

『単純パーセプトロン』は大したことできない。
『多層パーセプトロン』は何でもできる。

(『単純パーセプトロン』は直線の向こう側か?それとも直線のこっち側か?の認識しかできない。)
0018名無しさん@お腹いっぱい。2012/03/28(水) 20:16:47.90ID:dObpLfXx0
◆多層パーセプトロンの作り方

上記リンク先の図のように、部品を3層に組むだけである。
これだけである。

しかし、これだけでは動いてくれない。
学習させていかないといけない。
0019名無しさん@お腹いっぱい。2012/03/28(水) 20:21:55.50ID:dObpLfXx0
□□□□□□□□□□
□●□□□□□□□□
□□□□□□□□□□
□□□●□□□□□□
□□□□□□□□□□
□□□□□□□□□□
□□□□□□□□□□
□□□□□□□▲□□
□□□□□▲□□□□
□□□□□□□□□□

●=インド人
▲=日本人

だとしよう。どうやってパターン認識すべきか。
0020名無しさん@お腹いっぱい。2012/03/28(水) 20:24:05.17ID:dObpLfXx0
□□□□□□□□/□
□●□□□□□/□□
□□□□□□/□□□
□□□●□/□□□□
□□□□/□□□□□
□□□/□□□□□□
□□/□□□□□□□
□/□□□□□▲□□
/□□□□▲□□□□
□□□□□□□□□□

答えは『線を引いて、それのこっち側がインド人。
向こう側が日本人』とすればいい。

これがパーセプトロン。


で、どういう線を引けばいいのか。それがパーセプトロンの学習。
0021名無しさん@お腹いっぱい。2012/03/28(水) 20:26:45.40ID:dObpLfXx0
ところで >>14 で示した部品を組み合わせただけで、
『線を引いて、それのこっち側がインド人。 向こう側が日本人』
(インド人データだと発火する。日本人データだと発火しない)
そんな回路が作れるのだろうか?

インド人と日本人は直線で分けれるものとする。

これは宿題だ。
0022名無しさん@お腹いっぱい。2012/03/28(水) 20:33:08.37ID:dObpLfXx0
□□□□□□□□□□
□□□□□□□□□□
□□□□□□□●□□
●□□□□□□□□□
●□□▲□□□□□□
□□□□□▲□□□●
□□□□□□□□□□
▲□□□□□□□□□
□□▲□□□□□□□

これだとどうだろうか?
0023名無しさん@お腹いっぱい。2012/03/28(水) 20:35:16.70ID:dObpLfXx0
□□□□□□□□□□
□□□□□□□□□□
□□□□/\□●□□
●□□/□□\□□□
●□/▲□□□\□□
□/□□□▲□□\●
/□□□□□□□□\
▲□□□□□□□□□
□□▲□□□□□□□

こういう線を引けばいい。
これが >>13 が言っている『データを線形分離しながら分類して、どんどん収束させていく仕組み』だ。
0024名無しさん@お腹いっぱい。2012/03/28(水) 20:40:03.51ID:dObpLfXx0
ところで、パーセプトロンで
こんな曲がった線で分けるような事ができるだろうか?

前に書いた部品の図を良く見てほしい。
あれは組み合わせれば【『Zが発火』もしくは『Yが発火』したら発火】という
OR回路が作れる。つまり、【『線分W』のこっち側】もしくは【『線分V』のこっち側】
で発火する回路が作れるってことだ。
0025名無しさん@お腹いっぱい。2012/03/28(水) 21:55:25.37ID:dObpLfXx0
C#でパーセプトロンを可視化してみた。
http://www.youtube.com/watch?v=IUDCZtrsVfg
0026 【20.6m】 電脳プリオン 【東電 86.7 %】 2012/04/07(土) 22:35:35.05ID:BrZmBUch0?PLT(12079)
なるほどわからん
0027名無しさん@お腹いっぱい。2012/05/22(火) 23:14:20.37ID:2SVbhjqY0
面白そうではあるんだよねぇ
0028名無しさん@お腹いっぱい。2012/05/29(火) 23:25:51.94ID:nxLAdXIv0
初学者にお薦めの本はある?
0029名無しさん@お腹いっぱい。2012/05/29(火) 23:33:32.50ID:CEAUaKxh0
>>28
>>13で本が紹介されてるよ?
0030名無しさん@お腹いっぱい。2012/08/08(水) 13:32:46.85ID:2AgvXZE+0
パソコン上で使えるパーセプトロンってないの?
0031名無しさん@お腹いっぱい。2012/08/10(金) 00:50:54.96ID:xB6Rfk+j0
つーか人間の脳は明らかにパーセプトロンじゃないよな。小脳はともかく大脳だと抑制のフィードバックだのモジュレータだの回路が複雑すぎるわ
0032名無しさん@お腹いっぱい。2012/08/24(金) 07:00:33.83ID:Jo644rQf0
サポートベクターマシンってどうなの
0033名無しさん@お腹いっぱい。2012/10/22(月) 00:47:21.77ID:ihw2c6AR0
素晴らしいよ
0034名無しさん@お腹いっぱい。2012/11/19(月) 00:01:17.19ID:UOOJu5R40
素晴らしいが、結局特徴量の抽出アルゴリズムが最重要。
判定が速いのはいい。
0035名無しさん@お腹いっぱい。2012/12/22(土) 06:28:57.90ID:7x5zDys80
最近SVM使ってないな
0036名無しさん@お腹いっぱい。2013/01/02(水) 22:35:58.96ID:3gF9PkZr0
パーセプトロンとSVMとがどちらも線型分離で分類するなら、
両者の違いは何?
0037名無しさん@お腹いっぱい。2013/01/03(木) 04:31:01.74ID:vOifdDXb0
パーセプトロンは、とにかく分離できればOK
SVMは、できるだけ「よく」分離しようとする(マージン最大化)
もし線形分離可能なデータがあったとして、分離の仕方は一通りでは無いよね?
0038名無しさん@お腹いっぱい。2013/01/04(金) 00:35:38.98ID:xVzbGrAt0
その「よく」ってのは曲者で、学習データから得られた最大マージンとなる境界が
真の境界と一致するとは限らない。
0039名無しさん@お腹いっぱい。2013/01/04(金) 04:20:56.86ID:MHBZl3IE0
それは当然でしょ
0040名無しさん@お腹いっぱい。2013/03/03(日) 22:41:28.21ID:MfK0UNAs0
>>38
あくまでも効率的に分析するためのツールだからな

精確さを重視するならコストをかけて調べるべきだ
0041名無しさん@お腹いっぱい。2013/03/19(火) 18:44:43.40ID:BuSxK0Bt0
いまでもニューラルネットとか、真面目に研究してる人っているのかな?
ファジーやGAやニューラルネットが混沌としてた時代に学生やってたので、ふと気になった。
統計処理や回帰分析でパターン認識やればすぐにいい成果でるのがわかってるんだから、幾何や解析の手法を持ち込んでメタなレイヤーか学習関数をいれてやればと手をつけたら誰も相手してくれなくなった。
一台のEWSワークステーションをシェアしてて、40MBのライブラリをHDDにダウンロードしたら怒られる時代。GPU,SSD,数GBの主記憶。もう当時とは別世界だな。
0042名無しさん@お腹いっぱい。2013/03/28(木) 05:34:38.52ID:KgoEZDMP0
>>41
廃れてるのか?
0043名無しさん@お腹いっぱい。2013/12/28(土) 13:11:53.82ID:ZjSOREOd0
>>41
別世界になってもたいして進歩してない現実。
0044名無しさん@お腹いっぱい。2014/06/12(木) 05:34:21.87ID:VtHIWZp20
あげ
■ このスレッドは過去ログ倉庫に格納されています