λ-calculus.λ計算.(lambda calculus)
■ このスレッドは過去ログ倉庫に格納されています
0040名無しさん@お腹いっぱい。
2006/12/19(火) 00:57:15ID:+qnJ1mPk0ラムダでも実行という概念を考えられないわけではないと思うよ。
実行を計算の進行だと考えたりすれば、β簡約の1ステップを実行1ステップと言えない
わけでもない。勉強してれば色々出てくるけれど、簡約の順序を様々に定めてみたり、
自然意味論なんていう概念を持ちだしてみたり、バリエーションは豊かだなあ。
和書だと
プログラミング言語の基礎理論, 大堀淳, 共立出版
に書いてあるけれど、あせって理解しようとする必要もまだないと思う。
意味論っていうキーワードを知っておくのはいいかもしれない。
CPSは純粋なラムダ計算の枠外のものと思っていいんじゃないかな。
これもあわてて取り組むこともないだろうけれど、さっきこんなページみつけちゃった。
ttp://www.is.s.u-tokyo.ac.jp/vu/jugyo/processor/process/soft/compilerresume/coverq3/coverq3.html
処理系の方面に興味が移ったら、必須の知識だろうね。
モナドに関してはラムダ計算を拡張する手段と考えることもできて、それが一番わかり
やすい捉えかたかもしれない。Haskellのモナドなんかは、ラムダで副作用なしにI/Oを
実現できるようにした研究の実用例としての筆頭だな。ただ、Haskellのモナドだけで
しかモナドを考えられないようになったら、困ることが起こりうる。
圏論とラムダ計算の関係は他にもあって、計算現象が何を意味しているのかを捉える手
段であったりする。むしろこちらの方が一般性があって重要だけど。Haskellのモナド
は、計算現象のうちの一部である副作用を考える上で役割を果たした、と言えるよね。
ところで、Yコンビネータの件が解決したのか気になるんだけど、どうなの?
不動点定理を理解して、かつ>>28の(4)から(3)を手計算で示せたりはしたのかな。
自力で計算できそうになければ、時間のあるときに計算して書き込むけれど。
長文ごめんね。
■ このスレッドは過去ログ倉庫に格納されています